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ARTICLE INFO ABSTRACT

Keywords: Experience-dependent neuronal plasticity is a fundamental substrate of learning and memory. Intrinsic excit-
Learning ability is a form of neuronal plasticity that can be altered by learning and indicates the pattern of neuronal
Memory responding to external stimuli (e.g. a learning or synaptic event). Associative fear conditioning is one form of

Intrinsic plasticity
Fear memories
Extinction

Memory modulation

learning that alters intrinsic excitability, reflecting an experience-dependent change in neuronal function. After
fear conditioning, intrinsic excitability changes are evident in brain regions that are a critical part of the fear
circuit, including the amygdala, hippocampus, retrosplenial cortex, and prefrontal cortex. Some of these changes
are transient and/or reversed by extinction as well as learning-specific (i.e. they are not observed in neurons
from control animals). This review will explore how intrinsic neuronal excitability changes within brain
structures that are critical for fear learning, and it will also discuss evidence promoting intrinsic excitability as a
vital mechanism of associative fear memories. This work has raised interesting questions regarding the role of
fear learning in changes of intrinsic excitability within specific subpopulations of neurons, including those that
express immediate early genes and thus demonstrate experience-dependent activity, as well as in neurons
classified as having a specific firing type (e.g. burst-spiking vs. regular-spiking). These findings have interesting
implications for how intrinsic excitability can serve as a neural substrate of learning and memory, and suggest
that intrinsic plasticity within specific subpopulations of neurons may promote consolidation of the memory

trace in a flexible and efficient manner.

1. Introduction

Experience-driven cellular changes are a critical component of
learning and memory and are necessary for learning-related plasticity.
Intrinsic excitability is one example of a learning-related change in
neuronal plasticity and reflects alterations in the way a neuron responds
to incoming information (e.g. from a learning event or synaptic sti-
mulation). One learning paradigm that has received considerable at-
tention for its role in learning-related changes of intrinsic excitability is
classical fear conditioning. This learning paradigm has been shown to
lead to distinct changes of intrinsic excitability in brain regions integral
to the fear circuit. Intrinsic excitability is often learning-specific (i.e. it
does not occur in animals that do not learn), transient (i.e. it lasts for a
brief period of time after the learning event), and can be observed in
specific subpopulations of neurons that likely reflect the memory trace.
Thus, intrinsic plasticity is thought to be a substrate of learning that is
independent of synaptic changes. In this review, we will briefly

highlight the mechanisms of intrinsic plasticity, followed by a discus-
sion of the role of several prominent brain regions in the fear circuit, as
well as the role of fear conditioning in intrinsic plasticity within these
regions. Evidence from these studies will support the idea that intrinsic
excitability is an experience-dependent form of plasticity, establishing
it as a critical substrate of fear learning and memory.

1.1. Intrinsic plasticity versus synaptic plasticity

The substrates for learning can be revealed by examining experi-
ence-dependent changes in neuronal function, i.e. plasticity. Such
plasticity can be observed as synaptic changes, including long-term
potentiation (LTP) or long-term depression (LTD), as well as non-sy-
naptic changes, including intrinsic excitability. Since both synaptic and
intrinsic plasticity are closely linked to learning and memory (Lynch,
2004; Mayford, Siegelbaum, & Kandel, 2012; Sehgal, Song, Ehlers, &
Moyer, 2013; Zhang & Linden, 2003), they are invaluable for
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uncovering the neural substrates of memory.

Synaptic plasticity is a well-known cellular mechanism of learning
and memory and has been extensively studied in a variety of prepara-
tions (for review see Lynch, 2004). The observation of enhanced sy-
naptic transmission in the dentate gyrus following high frequency sti-
mulation of the perforant path by Bliss and Lomo (1973) spurred
similar observations shortly thereafter that supported the idea that
learning and LTP depend upon similar changes of synaptic efficacy.
Indeed, learning and LTP are linked in diverse ways. While protein
synthesis is vital for long-term memory, short-term memory is un-
affected when protein synthesis is blocked (Davis & Squire, 1984;
Emptage & Carew, 1993; Izquierdo & Medina, 1998; McGaugh, 2000).
Similarly, long-lasting LTP (L-LTP) critically depends on de novo protein
synthesis, but a shorter, earlier phase of LTP (E-LTP) does not (Kang,
Welcher, Shelton, & Schuman, 1997; Korte et al., 1995; Lynch, 2004;
Pang et al.,, 2004; Poo, 2001). This suggests that learning-induced
biochemical changes parallel those associated with LTP. Additionally,
mechanisms that block LTP also block learning. For example, blockade
of NMDA receptors (NMDARs) using APV disrupts spatial memory as
well as LTP induction (Morris, Anderson, Lynch, & Baudry, 1986). Al-
though a critical component of learning and memory, synaptic plasti-
city is not an exclusive form of experience-dependent plasticity, but is
coupled with other forms of plasticity, including intrinsic excitability.

Intrinsic neuronal excitability is a non-synaptic form of cellular
plasticity that supports learning and memory. The pattern of neuronal
responding to learning-related stimuli can be observed by measuring
spike frequency adaptation (the number of action potentials (APs) fired
in response to sustained excitation), and post-burst after-
hyperpolarization (AHP; hyperpolarizing current following a burst of
APs). An experience like associative fear learning can affect either or
both of these measures, often in the form of reduced spike frequency
adaptation, as well as reduced post-burst AHP (Kaczorowski &
Disterhoft, 2009; McKay, Matthews, Oliveira, & Disterhoft, 2009; Oh &
Disterhoft, 2015; Sehgal, Ehlers, & Moyer, 2014; Song, Detert, Sehgal, &
Moyer, 2012). Additionally, intrinsic excitability is thought to be a form
of metaplasticity, acting as a catalyst for future synaptic changes, and
influencing future learning (Abraham, 2008; Sehgal et al., 2013). It is
clear that intrinsic and synaptic plasticity are independent mechanisms
but are directly linked, such that enhanced intrinsic excitability pro-
motes synaptic strength (for review see Sehgal et al., 2013). Histori-
cally, compared to synaptic plasticity, intrinsic plasticity has received
far less attention as a mechanism of learning and memory. Therefore,
this review will focus on mechanisms of intrinsic plasticity as well as
recent developments in understanding how intrinsic plasticity changes
as a consequence of fear learning.

1.2. Mechanisms of intrinsic plasticity

Following synaptic transmission (Fig. 1, Panel 1), an AP will be
initiated if excitatory postsynaptic potentials (EPSPs) exceed inhibitory
postsynaptic potentials (IPSPs). Moreover, EPSPs and IPSPs are re-
quired to propagate from their site of generation to the AP zone in the
soma (Fig. 1, Panel 2). Propagation of synaptic potentials are influenced
by 1) the complex dendritic morphology, 2) basic dendritic cable
properties and, 3) voltage-gated conductances (for reviews see
Spruston, 2008; Spruston, Stuart, & Hausser, 2016). Thus, changes in
dendritic cable properties and/or changes in active dendritic con-
ductances can influence the magnitude of local EPSPs, their integration,
and their propagation to the soma (Papoutsi, Sidiropoulou, & Poirazi,
2012). The slow afterhyperpolarization current (sIagp) has been shown
to modulate synaptic input propagating to the soma (Hotson & Prince,
1980; Lancaster & Adams, 1986; Lancaster, Hu, Ramakers, & Storm,
2001; Storm, 1989). For example, activation of slayp reduces the am-
plitude of EPSPs in the hippocampus (Sah & Bekkers, 1996), which
leads to a reduction in intrinsic plasticity. Conversely, inhibition of
sIapp enhances intrinsic excitability by slowing the decay of summated
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EPSPs (Lancaster et al., 2001) in hippocampal pyramidal neurons.
Furthermore, blockers of sIayp promote LTP induction in hippocampal
neurons (Cohen, Coussens, Raymond, & Abraham, 1999; Sah & Bekkers,
1996). The role of sIayp in synaptic propagation and integration has
also been observed in other fear-related brain structures including the
amygdala and prefrontal cortex (Faber, Delaney, & Sah, 2005; Power,
Bocklisch, Curby, & Sah, 2011; Zaitsev & Anwyl, 2011). Thus, slapp
regulates synaptic efficacy by propagating and integrating synaptic
potentials from the dendrites to soma.

When synaptic inputs reach the AP initiation zone, the increased
propensity for an EPSP to fire an AP is a phenomenon termed EPSP-
spike (E-S) potentiation (Bliss & Lomo, 1973; Fig. 1, Panel 3). LTP in-
duction (Noguchi, Saito, & Abe, 1998), activation of NMDARs, and
elevated intracellular calcium (Ca®™) concentration (Aizenman &
Linden, 2000) and/or enhanced intrinsic excitability (Pugliese,
Ballerini, Passani, & Corradetti, 1994) can promote E-S potentiation.
Furthermore, E-S coupling can be bidirectional as LTD induction in CA1
hippocampal neurons results in E-S depression (Daoudal, Hanada, &
Debanne, 2002). Other intrinsic factors that may influence AP initiation
include AP threshold and resting membrane potential, which depend on
ion channels in the soma (Papoutsi et al., 2012). Taken together, in-
trinsic plasticity can regulate dendritic integration of synaptic input and
impact E-S coupling.

In addition to the all-or-none firing nature of an AP, enhanced ex-
citability (e.g. increased input resistance, reduced current required to
elicit an AP, reduction in spike frequency adaptation) promotes a final
neuronal output signal (Fig. 1, Panel 4). Moreover, enhanced intrinsic
excitability is correlated with enhanced learning (Disterhoft, Coulter, &
Alkon, 1986; Disterhoft, Golden, Read, Coulter, & Alkon, 1988). Spike
frequency adaptation is mediated by AHP current, and increased AHP
reduces AP firing frequency. The AHP acts as a negative feedback me-
chanism and has three components: fast afterhyperpolarization (fAHP;
within 2-5 ms of an AP), medium afterhyperpolarization (mAHP;
50-150 ms following one or more APs), and slow after-
hyperpolarization (sAHP; 1 s following a burst of APs; Storm, 1987;
Storm, 1989; Sah & Bekkers, 1996; Kaczorowski, Disterhoft, &
Spruston, 2007; Song & Moyer, 2017). The fAHP and mAHP are
mediated by Ca®*-activated potassium (SK) channels (Faber & Sah,
2002; McKay et al., 2012). Furthermore, mAHP is modulated by M-type
K* channels or hyperpolarization-activated cyclic nucleotide-gated
(HCN) cation channels (Gu, Vervaeke, Hu, & Storm, 2005). The sAHP
component is regulated by the apamin-insensitive sIagp (Gasparini &
DiFrancesco, 1999; Sah, 1996; Stocker, Krause, & Pedarzani, 1999;
Storm, 1989). Overall, enhanced neuronal excitability or reduced spike
frequency adaptation is mediated by the AHP, which may promote
synaptic throughput (Moyer, Thompson, & Disterhoft, 1996).

Single AP characteristics including AP amplitude, AP half-width,
and the afterdepolarization (ADP) following an AP influence neuronal
excitability (Fig. 1, Panel 5). AP amplitude and AP half-width influence
the duration and extent of Ca®>* influx at the presynaptic terminal
(Deng et al., 2013). The ADP property is mediated by metabotropic
glutamate receptors (mGluRs; Greene, Schwindt, & Crill, 1994; Young,
Chuang, & Wong, 2004; Park et al., 2010) and muscarinic receptors
(Haj-Dahmane & Andrade, 1998; Yan, Villalobos, & Andrade, 2009).
The ADP has been shown to trigger burst firing in hippocampal neurons
(Azouz, Jensen, & Yaari, 1996; Jensen, Azouz, & Yaari, 1996; Sanabria,
Su, & Yaari, 2001; Schwartzkroin, 1975; Su, Alroy, Kirson, & Yaari,
2001) and bursting is a requirement for synaptic plasticity at the
Schaffer collateral to CAl synapse (Pike, Meredith, Olding, & Paulsen,
1999; Thomas, Watabe, Moody, Makhinson, & O’dell, 1998).

Following initiation in the axon, APs can backpropagate (bAPs) to
the soma and dendritic trees (Fig. 1, Panel 6). Backpropagation of APs
are influenced by dendritic morphology (Goldstein & Rall, 1974) and
various ionic conductances in the dendrites including voltage-gated
Na™ channels (Hiusser, Stuart, Racca, & Sakmann, 1995), A-type K*
channels (Frick, Magee, & Johnston, 2004; Hoffman, Magee, Colbert, &
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Fig. 1. Synaptic and intrinsic properties modulate the flow of information within a neuron. Middle panel shows a confocal image of a retrosplenial cortical neuron
that was filled with biocytin during whole-cell patch-clamp recording. Numbers 1, 2, 3, 4, 5 and 6 refer to the boxes in the left and right panels. (1) Most neuronal
inputs originate via synapses on the dendrites and dendritic spines, which can undergo bidirectional plasticity in the form of LTP and LTD. Such plasticity is
modulated by AMPA and NMDA receptor-mediated transmission as well as intrinsic membrane properties. (2) Following synaptic transmission, EPSPs are propagated
from their site of generation towards the soma and AP zone. Propagation of EPSPs is influenced by dendritic cable as well as active membrane properties. (3) Once the
signal reaches the soma, the increased likelihood for an EPSP to fire an AP is termed E-S potentiation. Factors including AP threshold and resting membrane potential
determine AP initiation. (4) Increased neuronal excitability (e.g., reduction in the postburst AHP and/or spike frequency adaptation) promotes an output signal. (5)
Other intrinsic factors including AP amplitude, AP duration, and the presence or absence of an afterdepolarization also influence neuronal excitability, which
modulates neuronal processing and synaptic throughput. (6) Synaptic efficacy is also influenced by backpropagating APs, which are mediated by complex dendritic
morphology, and dendritic ionic conductances such as I, currents. Abbreviations: long-term potentiation (LTP); long-term depression (LTD); action potential (AP);
excitatory postsynaptic potential (EPSP); EPSP-spike (E-S). Electrophysiological traces in boxes 3 and 6 were adapted from Daoudal et al. (2002) (Copyright (2002)
National Academy of Sciences, USA) and Tsubokawa, Offermanns, Simons, and Kano (2000) (Copyright (2000) Society for Neuroscience).

Johnston, 1997), and Ca®* influx into the dendritic compartments
(Larkum, Kaiser, & Sakmann, 1999). Specifically, induction of LTP in-
creases dendritic excitability and bAP amplitude, which is modulated
by Ca?" influx and A-type K™ channels (Frick et al., 2004). Moreover,
excitatory and inhibitory synaptic transmission influence bAPs
(Spruston et al., 2016). For example, synaptic depolarization facilitates
bAPs in the apical dendrites (Hoffman et al., 1997; Stuart & Héausser,
2001; Watanabe, Hoffman, Migliore, & Johnston, 2002) whereas GA-
BAergic inhibitory conductances attenuate bAPs (Pérez-Garci,
Gassmann, Bettler, & Larkum, 2006; Tsubokawa & Ross, 1996).
Therefore, by influencing intrinsic excitability, bAPs promote synaptic
plasticity in the brain.

1.3. Fear learning

Different forms of learning can induce local and global changes by
modulating various intrinsic properties including resting and voltage-de-
pendent channels, thereby leading to changes in neuronal excitability.
Understanding plasticity of intrinsic excitability is a critical component in
the analysis of learning and memory mechanisms. Although both operant
(Motanis, Maroun, & Barkai, 2012; Saar, Grossman, & Barkai, 1998, 1999;
Zelcer et al., 2005) and classical (Disterhoft et al., 1986; Kaczorowski &
Disterhoft, 2009; Moyer et al., 1996; Moyer, Power, Thompson, &
Disterhoft, 2000; Oh & Disterhoft, 2015) conditioning paradigms modulate
intrinsic excitability, this article focuses on intrinsic changes associated
with classical fear conditioning.

1.4. Fear conditioning paradigms

The first laboratory study of fear conditioning was conducted in
infants and is famously known as the “Little Albert” study (Watson &

Rayner, 1920). In this study, a 9 month old infant (Albert) was condi-
tioned to associate a white rat (conditioned stimulus; CS) with a loud
noise (unconditioned stimulus; US). Several decades later, Ingram &
Fitzgerald, 1974 demonstrated that infants as young as 3 months
showed greater skin conductance responses to a CS associated with
aversive stimuli (CS+) compared to the CS that was presented alone
(CS—), suggesting that fear conditioning can be acquired during the
early stages of development. Numerous studies on fear conditioning
have been carried out in many other species. Further, there has been an
exponential growth in different types of fear conditioning studies
(Fanselow & Sterlace, 2014) as it not only serves as a model for anxiety
disorders but is also useful for studying basic cellular mechanisms of
learning and memory. In general, classical fear conditioning involves
pairing a neutral cue such as a light or tone (CS) with an aversive cue
such as a mild footshock (US) that naturally elicits a stereospecific
freezing or crouching response as the unconditioned response (UR). A
learned association between CS and US occurs over multiple pairings of
the two stimuli, resulting in freezing behaviors (conditioned response;
CR) to the CS alone. Thus, classical fear conditioning is invaluable for
studying the neurobiology of learning and memory (Kim & Jung, 2006).

Animals can acquire a conditioned fear response to a surrounding
environment or context as well as to discrete stimuli, such as an audi-
tory CS. In the absence of discrete cues, unsignaled presentations of a
US lead to acquisition of fear to the foreground context. When discrete
cues are present, such as an auditory CS, presentations of the US can
lead to acquisition of fear to both the CS and the background context
(Phillips & LeDoux, 1994; Fanselow, 2000; Gould & Bevins, 2012).
There are two basic fear conditioning paradigms involving discrete
cues: delay and trace. In delay fear conditioning, paired CS-US pre-
sentations are contiguous (i.e. there is temporal overlap between onset
of the CS and onset of the US - they often co-terminate), and acquisition
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depends predominantly on the amygdala (Phillips & LeDoux, 1992). In
contrast, trace fear conditioning involves paired CS-US presentations
that are not contiguous, but rather are separated by a brief temporal gap
between offset of the CS and onset of the US called the trace interval.
The presence of the trace interval necessitates explicit awareness of the
CS-US relationship, and requires the interaction of subcortical and
cortical brain regions, including the amygdala, hippocampus, pre-
frontal, rhinal, and retrosplenial cortices (Detert, Kampa, & Moyer,
2008; Esclassan, Coutureau, Di Scala, & Marchand, 2009a, 2009b;
Gilmartin & Helmstetter, 2010; Gilmartin, Kwapis, & Helmstetter, 2012;
Kholodar-Smith, Boguszewski, & Brown, 2008; Kwapis, Jarome, Lee, &
Helmstetter, 2015; Kwapis, Jarome, Schiff, & Helmstetter, 2011;
McEchron, Bouwmeester, Tseng, Weiss, & Disterhoft, 1998). Since au-
ditory delay or trace fear paradigms also produce background fear to
the training context, later exposure to the original training context after
a conditioning session results in increased freezing. These contextual
fear memories are dependent on dorsal hippocampus (Phillips &
LeDoux, 1992, 1994). Classical fear conditioning paradigms provide
critical insight into how learning affects intrinsic neuronal plasticity of
many cortical and subcortical neurons that are part of the fear circuit
(for review see Johansen, Wolff, Luthi, & LeDoux, 2012; Tovote, Fadok,
& Luthi, 2015), and while there are many brain regions involved in fear
conditioning, this section will focus on the role of the amygdala, hip-
pocampus, retrosplenial cortex (RSC) and medial prefrontal cortex
(mPFC; see Fig. 2 for basic schematic).

1.5. Basic fear circuit (role of amygdala)

The amygdala consists of several nuclei and subnuclei, and is well-
known for its role in auditory fear conditioning. Generally, auditory
information about the CS converges on the lateral portion of the
amygdala (LA), eventually leaving via the central nucleus (CE),

RSC

b
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—

+
——( Fear

+

Fig. 2. Schematic illustrating circuitry for fear acquisition and extinction. The
RSC forms reciprocal connections with DH and these projections are integral for
contextual and trace fear acquisition and extinction. DH sends projections to
VH, which forms connections with the mPFC. The PL and IL subregions dif-
ferentially control fear-related memories. The PL projects to the BLA and to the
CeM to support fear memories (red lines). The IL projects to the ITC or CeL to
promote fear extinction (green lines). Abbreviations: retrosplenial cortex (RSC);
hippocampus (HPC); dorsal hippocampus (DH); ventral hippocampus (VH);
medial prefrontal cortex (mPFC); prelimbic region of the mPFC (PL); infra-
limbic region of the mPFC (IL); medial subdivision of the central nucleus of the
amygdala (CeM); lateral subdivision of the central nucleus of the amygdala
(CeL); intercalated cells (ITC).
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resulting in defensive responding (i.e. fear expression; LeDoux, 2000).
In contrast, background contextual information is routed from the
hippocampus to basal amygdala (BA), then exits via CE (LeDoux et al.,
2000). Both delay and trace fear conditioning are supported by amyg-
dala function. Amygdala lesions disrupt delay fear learning (LeDoux,
1992), and delay fear conditioning leads to distinct changes in amyg-
dala plasticity (Han et al., 2007, 2009; Lee & Kim, 1998; Reijmers,
Perkins, Matsuo, & Mayford, 2007; Rumpel, LeDoux, Zador, & Malinow,
2005; Sehgal et al., 2014). LA neurons display increased expression of
cAMP response element-binding protein (CREB) following delay fear
conditioning (Han et al., 2007), and selective deletion of these CREB-
expressing neurons impairs fear expression (Han et al., 2009). Trace
fear memories are also dependent on intact amygdala function, as trace
fear conditioning deficits are evident when the amygdala is lesioned
(Selden, Everitt, Jarrard, & Robbins, 1991), inactivated (Guimariis,
Gregoério, Cruz, Guyon, & Moita, 2011; Gilmartin et al., 2012; but see
Raybuck & Lattal, 2011), when amygdala protein synthesis is disrupted
(Kwapis et al., 2011), and following disruption of cholinergic signaling
(Baysinger, Kent, & Brown, 2012). Together, these studies illustrate the
importance of the amygdala in fear learning.

1.6. Fear circuit involving higher-order brain regions

1.6.1. Dorsal hippocampus

The hippocampus is pivotal for fear learning, with several studies
suggesting a role for the dorsal subregion (DH) in trace fear con-
ditioning. Trace fear learning is disrupted following electrolytic or cy-
totoxic DH lesions (Burman, Starr, & Gewirtz, 2006; Chowdhury,
Quinn, & Fanselow, 2005; Fendt, Fanselow, & Koch, 2005; McEchron
et al., 1998; McEchron, Tseng, & Disterhoft, 2000; Quinn, Oommen,
Morrison, & Fanselow, 2002; Trivedi & Coover, 2006) as well as tem-
porary DH inactivation using muscimol (Guimarais et al., 2011;
Raybuck & Lattal, 2011). Trace fear conditioning is also impaired when
other forms of DH function are altered, including blockade of NMDARs
(Misane et al., 2005; Quinn, Loya, Ma, & Fanselow, 2005; Seo, Pang,
Shin, Kim, & Choi, 2008; Wanisch, Tang, Mederer, & Wotjak, 2005),
impaired extracellular signal-regulated kinase (ERK) or CREB signaling
(Huang, Chiang, Liang, Thompson, & Liu, 2010; Peters, Kalivas, &
Quirk, 2009), disrupted protein synthesis (Runyan & Dash, 2005;
Wanisch et al., 2005), or impaired function of the micro RNA mir-123
(Wang et al., 2013). Interestingly, while trace fear conditioning is ad-
versely affected by disrupted DH functioning, delay fear conditioning
remains intact (Burman et al., 2006; Chowdhury et al., 2005; Esclassan
et al., 2009b; McEchron et al., 2000; Misane et al., 2005; Quinn et al.,
2002; Raybuck & Lattal, 2011). This suggests DH function is selectively
required for trace fear conditioning, rather than for fear learning in
general.

1.6.2. Ventral hippocampus

In contrast to DH, ventral hippocampus (VH) also seems to support
delay fear learning in addition to context and trace fear learning. For
example, chemical lesions of VH disrupt delay fear (Hunsaker & Kesner,
2008; Richmond et al., 1999), while electrolytic VH lesions disrupt both
context and delay fear memory (Maren & Holt, 2004). Furthermore,
inhibition of VH protein synthesis disrupts context fear memory (Rudy
& Matus-Amat, 2005), as does altered NMDAR function (Zhang, Bast, &
Feldon, 2001), suggesting context fear memory depends on protein
synthesis and intact NMDAR-mediated signaling in VH. Delay fear
learning is also disrupted following muscimol inactivation of VH
(Esclassan et al., 2009b; Sierra-Mercado, Padilla-Coreano, & Quirk,
2011), but it leaves context fear learning intact (Maren & Holt, 2004),
suggesting context fear memory may be less sensitive to enhanced
GABA, signaling in VH. Interestingly, delay fear conditioning enhances
ERK activity in VH but not DH, and in males but not females (Gresack,
Schafe, Orr, & Frick, 2009), suggesting sex may drive selective re-
cruitment of VH to support delay fear memories. Thus, VH plays an
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important role in context and auditory delay fear memory.

VH function is also necessary for successful trace fear learning, as
VH inactivation (Cox, Czerniawski, Ree, & Otto, 2013; Czerniawski,
Yoon, & Otto, 2009; Gilmartin et al., 2012) or lesions (Yoon & Otto,
2007) disrupt trace fear conditioning. Some evidence supports a role for
VH rather than DH in trace fear learning. Trace fear acquisition and
expression are selectively disrupted by VH inactivation but not DH in-
activation (Czerniawski et al., 2009), and while trace fear learning
deficits are evident when VH is lesioned either before or after training,
DH lesions only produce behavioral deficits when they occur after
training (Yoon & Otto, 2007). Similarly, NMDAR blockade in DH only
disrupts trace fear memory when it occurs before training, while
NMDAR blockade in VH either before training or testing disrupts trace
fear memory (Czerniawski, Ree, Chia, & Otto, 2012). Further, multiple
measures of fear memory are sensitive to VH inactivation, including
freezing to the intertrial interval, CS, and trace interval, whereas DH
inactivation only impairs CS freezing (Cox et al., 2013). These data
suggest that not only is VH important for trace fear memory, but that it
may also be required for more aspects of trace fear encoding and re-
trieval than DH.

1.6.3. Retrosplenial cortex

The RSC is known to support contextual fear conditioning, and trace
fear conditioning. For example, one recent study used c-fos genetic
tagging to label RSC cells that were active during contextual fear con-
ditioning. Optogenetic reactivation of the tagged RSC cells in a novel
context (i.e. not the training context) induces high freezing responses in
mice (Cowansage et al., 2014). Moreover, rodents with RSC lesions
display impaired acquisition (Keene & Bucci, 2008a; Robinson,
Poorman, Marder, & Bucci, 2012) and retrieval (Keene & Bucci, 2008a,
2008b) of contextual fear conditioning compared to control animals.
Furthermore, infusions of a protein synthesis inhibitor, anisomycin
(Kwapis et al., 2015; Kwapis, Jarome, Lee, Gilmartin, & Helmstetter,
2014) or NMDAR antagonists (Corcoran et al., 2011) in the RSC dis-
rupts formation of context fear memories. Pharmacological blockade or
lesions of the RSC attenuates retrieval of recent contextual fear con-
ditioning (Corcoran et al., 2011; Keene & Bucci, 2008a, 2008b), how-
ever, RSC involvement is also evident in remotely acquired contextual
fear memories (Corcoran et al., 2011; Tayler, Tanaka, Reijmers, &
Wiltgen, 2013; Todd, Mehlman, Keene, DeAngeli, & Bucci, 2016). For
example, NMDAR blockade or lesions of the rodent RSC impairs re-
trieval of remote memories approximately 8 weeks after contextual fear
conditioning (Corcoran et al., 2011; Todd et al., 2016). Taken together,
the RSC is necessary for retrieval of both recent and remote contextual
fear memories.

Substantial evidence indicates that damage or inactivation of the
RSC does not affect delay fear conditioning. Lesions to RSC made prior
to or following delay fear conditioning does not impair fear expression in
rats (Keene & Bucci, 2008a, 2008b). Similarly, NMDAR blockade before
or after delay fear conditioning does not affect acquisition or retrieval
of fear in rodents (Corcoran et al., 2011; Kwapis et al., 2014, 2015).
However, RSC is sensitive to the temporal relationship between the CS
and US, and indeed, evidence suggests the RSC is necessary for trace
fear conditioning. Infusions of a protein synthesis inhibitor in the RSC
prior to training impairs acquisition of trace fear conditioning (Kwapis
et al., 2015), and infusions of NMDAR antagonists following trace fear
conditioning disrupts retrieval of trace fear memories (Kwapis et al.,
2014, 2015). Through the use of selective chemogenetic approaches,
inactivation of the RSC impairs retrieval of remote trace fear memories
(Todd et al., 2016). Therefore, unlike delay fear conditioning, the RSC
is necessary for both acquisition and retrieval of trace fear conditioning.

1.6.4. Medial prefrontal cortex

Trace fear encoding and retrieval critically depend on the prelimbic
(PL) subregion of the mPFC. Trace fear memory is disrupted when PL is
pharmacologically inactivated using the GABA, agonist muscimol
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(Gilmartin & Helmstetter, 2010), when PL neurons are optogenetically
silenced (Gilmartin, Miyawaki, Helmstetter, & Diba, 2013), and when
PL NMDARs are blocked (Gilmartin & Helmstetter, 2010; Gilmartin,
Kwapis, & Helmstetter, 2013). Neurons in mPFC also display enhanced
ERK phosphorylation (Runyan, Moore, & Dash, 2004) following trace
fear conditioning, suggesting that fear learning alters kinase activity.
The mPFC is also proposed to be a locus for long-term trace fear
memory storage, as mPFC lesions made 1 month or more following
trace fear conditioning lead to impaired responding to a conditioned
cue (Beeman, Bauer, Pierson, & Quinn, 2013; Quinn, Wied, Ma, Tinsley,
& Fanselow, 2008). These data fundamentally support a role for the
mPFC in trace fear learning.

1.7. Extinction circuit

Many of the same major brain regions that have received attention
for their importance in fear conditioning are also vital for extinction of
conditioned fear. During extinction training, repeated presentations of
the CS in the absence of an aversive stimulus gradually decreases
conditioned responses (Bouton, 2002, 2004). Muscimol infusions into
BLA, VH, or the infralimbic mPFC (IL) disrupt extinction of a delay fear
memory, while muscimol infusion into PL has no effect on extinction
learning (Sierra-Mercado et al., 2011). Context fear extinction likely
involves activity in DH CA1, as expression of the immediate early gene
(IEG) c-fos peaks 1 h following context fear conditioning and reverts to
basal levels following five days of extinction (Tronson et al., 2009).
Further, RSC is selectively recruited for extinction of trace fear rather
than delay fear memories (Kwapis et al., 2014). Additional evidence
suggests a role for mPFC-to-amygdala circuits in fear extinction. Delay
fear extinction increases c-fos expression in IL-to-BA projection neurons
relative to PL-to-BA projections or VH-to-BA projections (Orsini, Kim,
Knapska, & Maren, 2011), suggesting specific fear circuits are pre-
ferentially recruited during extinction learning. Taken together, these
studies highlight the importance of the amygdala, hippocampus, RSC,
and mPFC in fear conditioning and extinction, and suggest that fear
conditioning likely induces several forms of plasticity that underlie
successful training. The next section will explore the evidence that
suggests intrinsic plasticity is a critical substrate of fear conditioning
and extinction.

2. Contributions of intrinsic plasticity to acquisition and
extinction of fear learning

2.1. Early work

Alkon and colleagues provided early evidence for learning-related
non-synaptic plasticity in invertebrates such as the mollusk,
Hermissenda crassicornis (Alkon, 1974; Crow & Alkon, 1980). Further-
more, they demonstrated that increased excitability following learning
was due to reduced A-type K* currents, Ca®>*-dependent K* currents
(Alkon et al., 1985) as well as increased intracellular Ca?* concentra-
tion and protein phosphorylation (Alkon, 1984). Subsequent studies in
vertebrates showed that classical conditioning of the cat eyeblink reflex
was associated with enhanced excitability, and reduced rheobase
(Brons & Woody, 1980). The first study to investigate learning-related
changes using intracellular recordings in mammalian brain slices was
carried out by Disterhoft et al. (1986). Using hippocampal slice pre-
paration, they demonstrated a learning-specific increase in the intrinsic
excitability of rabbit CA1 neurons following acquisition of eyeblink
conditioning. Moreover, Kapp and colleagues may have been the first to
reveal that fear conditioning enhances neuronal excitability in fear-re-
lated structures such as the amygdala (Applegate, Frysinger, Kapp, &
Gallagher, 1982; Pascoe & Kapp, 1985). Over the past two decades,
there has been a steady increase in studies using in vitro recordings to
demonstrate that both fear conditioning and extinction alter intrinsic
excitability in multiple fear-related brain structures including the
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amygdala (Rosenkranz & Grace, 2002; Sehgal et al., 2014), hippo-
campus (McKay et al., 2009; Song et al., 2012; Zhang et al., 2017), and
mPFC (Santini, Quirk, & Porter, 2008; Sepulveda-Orengo, Lopez, Soler-
Cedeno, & Porter, 2013; Song, Ehlers, & Moyer, 2015). These studies
will be discussed in greater detail in the next section.

2.2. How do fear learning and extinction modulate intrinsic excitability in
fear-related brain structures?

2.2.1. Fear learning modulates excitability in the amygdala

Neurons in the amygdala undergo fear conditioning-induced in-
trinsic plasticity following olfactory and auditory delay fear con-
ditioning (Cousens & Otto, 1998; Goosens & Maren, 2001). Olfactory
fear conditioning enhances intrinsic excitability in LA neurons via re-
duced spike frequency adaptation (Rosenkranz & Grace, 2002). Inter-
estingly, reward-based olfactory discrimination reduces spike frequency
adaptation and the post-burst AHP, but olfactory fear conditioning in-
creases spike frequency adaptation and has no effect on the AHP in
basolateral amygdala (BLA) neurons (Motanis et al., 2012). This sug-
gests the direction of intrinsic plasticity may depend on the subjective
valuation of the stimuli used during training (i.e. appetitive vs. aver-
sive).

Amygdala neurons also undergo intrinsic plasticity following audi-
tory delay fear conditioning, and more recent findings suggest a subset
of neurons are changed and thus serve as engram-bearing neurons, or
neurons that support the memory trace. Delay fear conditioning reduces
spike frequency adaptation and the post-burst AHP in LA neurons, ef-
fectively increasing intrinsic excitability, and these changes occur in
roughly one-third of the neuronal population studied (Sehgal et al.,
2014). Further, as demonstrated in Fig. 3 these changes in excitability
are evident 24 h after fear conditioning, but not 1 h after conditioning,
suggesting they are time-dependent (Sehgal et al., 2014). Delay fear
conditioning also selectively increases spiking activity in Arc-positive
LA neurons, which suggests those neurons activated by fear con-
ditioning (i.e. those expressing Arc) selectively displayed increased
excitability (Gouty-Colomer et al., 2016). Such specificity of intrinsic
plasticity in LA neurons after delay fear conditioning suggests distinct
neuronal populations support the memory trace.

2.2.2. Fear learning modulates excitability in the hippocampus

In the hippocampus, fear conditioning increases DH CA1 intrinsic
excitability in the form of reduced AHP and reduced spike frequency
adaptation (Kaczorowski & Disterhoft, 2009; McKay et al., 2009; Song
et al., 2012). For example, McKay et al. (2009) demonstrate DH CA1

A

Control Conditioned 1 hr

Conditioned 24 hr
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neurons display reduced spike frequency adaptation and reduced AHP
following as little as three trace fear or context fear conditioning trials,
and that this change in excitability is reversed by extinction learning.
Work from our lab demonstrates that there is heterogeneity in trace fear
conditioning, such that a subset of animals demonstrates good memory
for the task (good learners), while others do not (poor learners). DH
CA1 neurons from good learners display reduced post-bust AHPs and
reduced spike frequency adaptation (Fig. 4), suggesting that increased
excitability is learning-specific (Song et al., 2012). Intrinsic excitability
is also correlated with synaptic plasticity in DH neurons following fear
learning. AHP amplitude, area, and duration are all negatively corre-
lated with magnitude of LTP following trace fear conditioning (Fig. 5),
suggesting greater synaptic potentiation is correlated with a smaller
AHP (Song et al., 2012).

Since VH is also critical for fear learning, it is likely that fear con-
ditioning modifies intrinsic plasticity in VH CAl neurons as well.
Indeed, preliminary findings from our lab indicate that context fear
conditioning reduces spike frequency adaptation in VH CA1 neurons,
reflecting increased intrinsic excitability (Fig. 6). In subiculum neurons,
which are a primary output of hippocampal CA1l, contextual fear con-
ditioning reduces the mAHP as well as the fAHP, and increases spiking
activity in response to a 15 s current injection (Dunn et al., 2018).
Notably, these changes are specific to regular-spiking neurons, and are
not observed in burst-spiking neurons (Dunn et al., 2018), suggesting
learning-related intrinsic plasticity in the subiculum is differentially
regulated depending on firing type. Thus, several hippocampal sub-
regions demonstrate learning-related intrinsic plasticity following fear
conditioning, underlining the significance of the hippocampus in as-
sociative fear learning.

2.2.3. Fear learning modulates excitability in the RSC

Although the RSC is necessary for both trace fear conditioning as
well as trace extinction (Kwapis et al., 2014, 2015), no published stu-
dies have investigated whether intrinsic excitability of RSC neurons is
altered as a function of trace fear learning. Preliminary findings from
our lab demonstrate that following retrieval of trace fear memories,
RSC neurons exhibit significantly decreased excitability compared to
RSC neurons from naive male rats (Fig. 7). The reduced excitability of
RSC neurons from trace fear conditioned rats may be due to a
homeostatic mechanism, which may counterbalance increased ex-
citatory synaptic inputs onto these neurons (Hayton, Lovett-Barron,
Dumont, & Olmstead, 2010; Hayton, Olmstead, & Dumont, 2011). Sy-
naptic transmission does not occur in isolation and compensatory me-
chanisms such as GABA transmission or decreased excitability are

B 6 *
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Control 1hr 24hr
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Conditioned

Fig. 3. Long-delay fear conditioning increases lateral amygdala neuronal excitability in a time-dependent manner. (A) Representative traces illustrating spike
frequency adaptation in response to a prolonged current injection in neurons from control and fear conditioned rats studied either 1-hr or 24-hr later. Note that LA
pyramidal neurons from Control rats (n = 28) but not Conditioned-24hr rats (n = 28) display robust spike frequency adaptation. Scale bar, 20 mV, 200 ms. (B) Bar
graphs illustrating the average number of APs elicited during prolonged current injection. LA pyramidal neurons from Conditioned-24hr rats fire significantly more
APs than those from Control rats. Neurons from Conditioned-1hr rats (n = 13) are not significantly different from any other group. Asterisk (*) indicatesp < 0.05
relative to LA neurons from Control rats. Abbreviations: lateral amygdala (LA); action potential (AP). Adapted from Sehgal et al. (2014).
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Fig. 4. Acquisition of trace fear conditioning in-
creases intrinsic excitability of dorsal hippocampal
CA1 pyramidal neurons. (A) Representative traces of
the post-burst AHP illustrating that DH CA1 neurons
from good learners had smaller AHPs compared to
those from poor learners, pseudoconditioned,
chamber-exposed, and naive rats. Scale bar, 2 mV,
100 ms. (B) Plot showing the time course of the post-
burst AHP amplitude as a function of training con-
dition. Neurons from good learners had a sig-
nificantly smaller AHP compared to all other groups
when measured at 0.1-0.8 s following current offset
(p < 0.05). (C) AP output of DH CA1 neurons in
response to a prolonged 1 s current injection. Notice
that CA1 pyramidal neurons from good learners fired
more APs than did CA1 neurons from poor learners,
3 pseudoconditioned, chamber-exposed, or naive rats.
Scale bar, 20 mV, 100 ms. Abbreviations: dorsal hip-

pocampus (DH); afterhyperpolarization (AHP); ac-
tion potential (AP). Adapted from Song et al. (2012).
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required to regulate neurons within their physiological firing rate, re-
gardless of enhanced excitatory inputs (Turrigiano, 2008; Zhang &
Linden, 2003). This regulatory feedback mechanism is prevalent in
other cortical structures such as mPFC where elevated AMPA/NMDA
receptor ratios (Hayton et al., 2010) and reduced intrinsic excitability
(Hayton et al., 2011) were observed following learning of a response
inhibition task. Similarly, intrinsic neuronal excitability in medium
spiny neurons of the nucleus accumbens decreases over development
(Kasanetz & Manzoni, 2009). Therefore, the reduction in intrinsic ex-
citability in the RSC following trace fear learning may be due to a
homeostatic mechanism, however, future work is required to elucidate
synaptic mechanisms of learning-related plasticity in the RSC.

2.2.4. Fear-related learning modulates intrinsic excitability in the mPFC
The mPFC has two subregions (PL and IL) that are morphologically
and functionally distinct (Heidbreder & Groenewegen, 2003). Further-
more, intrinsic membrane properties differ between these two sub-
regions in which IL neurons are more excitable compared to PL
(Kaczorowski, Davis, & Moyer, 2012; Song & Moyer, 2017). Behavio-
rally, the subregions of the mPFC have dissociable roles, such that the
PL is critical for fear expression whereas the IL inhibits fear behaviors
after extinction (Laurent & Westbrook, 2009; Peters et al., 2009; Sierra-
Mercado et al., 2011; Sotres-Bayon & Quirk, 2010; Vidal-Gonzalez,

Good
Learners

Vidal-Gonzalez, Rauch, & Quirk, 2006). Therefore, fear conditioning
and extinction differentially modify intrinsic excitability in PL and IL
neurons. For example, delay or context fear conditioning suppresses
excitability and increases the sAHP of IL neurons (Santini et al., 2008;
Soler-Cedeno, Cruz, Criado-Marrero, & Porter, 2016). Moreover, fear
extinction induces burst firing (Santini & Porter, 2010; Santini et al.,
2008) and enhances excitability (Sepulveda-Orengo et al., 2013) in IL
neurons compared to controls. Extinction also reduces the fAHP in IL
neurons (Santini & Porter, 2010; Santini et al., 2008; Sepulveda-Orengo
et al., 2013). Since the fAHP is mediated by SK channels, blockade of
these channels enhances neuronal excitability in IL and promotes fear
extinction (Criado-Marrero, Santini, & Porter, 2014). Thus, reduced IL
excitability maintains fear learning whereas increased excitability and
burst firing in IL regulates fear extinction.

2.3. Circuit-specific changes as a function of fear learning

The above-mentioned section highlights valuable information re-
garding how fear learning modulates intrinsic excitability in multiple
fear-related structures. However, it is important to consider that cor-
tical structures such as the mPFC have a heterogeneous population of
neurons that have distinct local circuit organization, interconnectivity,
firing and morphological properties (Mason & Larkman, 1990; DeFelipe
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Fig. 5. Synaptic plasticity is correlated with intrinsic excitability. The magni-
tude of LTP was significantly correlated with the amplitude (A), area (B), and
duration (C) of the post-burst AHP (solid lines). Data are mean values for each
animal where both intrinsic excitability and synaptic plasticity were studied in
the same slice. Interestingly, when good learners are removed from the plot, the
correlation is no longer significant (dashed line indicates slope of the line in the
absence of good learners). Abbreviations: long-term potentiation (LTP); after-
hyperpolarization (AHP).

& Farinas, 1992; Morishima & Kawaguchi, 2006; Wang et al., 2006;
Hattox & Nelson, 2007; Dembrow, Chitwood, & Johnston, 2010;
Ferreira, Yousuf, Dalton, & Sheets, 2015). For example, mPFC forms
reciprocal connections with subcortical brain structures such as the BLA
(Gabbott, Warner, Jays, Salway, & Busby, 2005; Hurley, Herbert, Moga,
& Saper, 1991; Vertes, 2004) and learning may alter mPFC neuronal
activity in a circuit-specific manner. Therefore, our lab and others have
used retrograde tracers to identify neurons in mPFC that project to the
BLA (termed mPFC-BLA projection neurons) and tested whether these
specific neurons undergo changes following fear learning (Bloodgood,
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Sugam, Holmes, & Kash, 2018; Song et al., 2015). Interestingly, trace
fear conditioning reduces excitability in regular-spiking PL-BLA pro-
jection neurons (Fig. 8) but enhances excitability in burst-spiking PL-
BLA projection neurons, which suggests that trace fear conditioning
may modulate intrinsic excitability in mPFC-BLA projection neurons in
a cell-type specific manner (Song et al., 2015).

Although trace fear conditioning decreases excitability in regular-
spiking PL-BLA neurons, it significantly enhances excitability in reg-
ular-spiking IL-BLA projection neurons. Furthermore, as shown in
Fig. 8, extinction reverses the effects of trace fear conditioning by re-
ducing excitability of IL-BLA neurons (Song et al., 2015). In contrast to
these findings, another study reported enhanced excitability in IL-BLA
neurons following extinction (Bloodgood et al., 2018). One possible
reason for discrepancies in the results of these studies may be due to
subregion specific effects as Song et al., 2015 exclusively recorded from
layer 5 mPFC-BLA neurons, whereas Bloodgood et al., 2018 recorded
from mPFC throughout layers 2/3 and 5. As mentioned earlier, neu-
rophysiological properties and intrinsic neuronal excitability sub-
stantially differ between layers 2/3 and 5 in the rat mPFC (Song &
Moyer, 2017) and may account for differences between studies.

Taken together, these studies strongly support a role for intrinsic
plasticity as a neural substrate of associative fear conditioning.
Modulation of intrinsic neuronal excitability likely reflects a learning-
related consolidation mechanism, as these changes are transient (Sehgal
et al., 2014), and are reversed by extinction learning in brain regions
necessary for fear acquisition (McKay et al., 2009; Santini et al., 2008;
Song et al., 2015). A common element among several of these studies is
the observation that fear conditioning-induced intrinsic plasticity oc-
curs within a subpopulation of neurons (Dunn et al., 2018; Gouty-
Colomer et al., 2016; Sehgal et al., 2014) or within a circuit (Bloodgood
et al., 2018; Song et al., 2015), which suggests these neurons are spe-
cific to the memory trace or engram. Although more research is needed
to further explore this idea, a substantial amount of work has been done
to establish intrinsic excitability as a critical component of learning-
related plasticity following fear conditioning.

3. Future directions

Fear-related cortical brain structures including the perirhinal cortex,
mPFC and RSC have heterogeneous neuronal populations that have
distinct intrinsic and morphological properties (Chang & Luebke, 2007;
Moyer, McNay, & Brown, 2002; Nye, Tuma, & Moyer, 2016), and they
can be either glutamatergic or GABAergic (Nelson & Turrigiano, 2008).
Moreover, we have shown that firing types are altered as a consequence
of developmental age in RSC neurons. The ADP property, which has
been shown to induce burst firing and synaptic plasticity, is absent in
regular-spiking RSC neurons of juvenile rats (prior to postnatal day 30)
and emerges during mid-adolescence (after postnatal day 30). These
neurons are classified as regular-spiking ADP neurons (RSapp; Yousuf &
Moyer, 2018). Interestingly, we note a subpopulation of adult RSC
neurons that oscillate between single-spiking RSapp neurons and burst-
firing neurons (Yousuf, Nye, & Moyer, in preparation). Additionally,
regular-spiking and burst-spiking neurons are differentially modified
following fear learning. For example, trace fear conditioning increases
excitability of burst-spiking neurons but decreases excitability of reg-
ular-spiking neurons within the mPFC (Song et al., 2015). In contrast,
fear conditioning induces greater intrinsic excitability of regular-
spiking but not burst-firing neurons of the hippocampus (Dunn et al.,
2018). Diversity of firing patterns as well as alterations in cell types
across development and learning raise multiple questions. The first
question is whether intrinsic plasticity is capable of converting one cell
type to another and if such changes can be induced by learning?
Second, which cell types are preferentially recruited to stabilize activity
within a neural circuit or to maintain homeostatic plasticity? A third
question is whether the cell-specific nature of intrinsic excitability may
promote flexible processes necessary for learning? For example, burst-
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Fig. 6. Context fear conditioning increases intrinsic

excitability of VH CA1 pyramidal neurons. Relative
to controls and trace fear conditioned rats, VH neu-
rons from context fear conditioned rats fire more
action potentials in response to a 1 s depolarizing
J‘L current injection, suggesting that intrinsic excit-
Context ability is increased in Context neurons.
Representative traces on the right show the number
of action potentials elicited by a 450 pA current in-
jection. Scale bar, 20 mV, 100 ms. Abbreviations:
507 O Naive ventral hippocampus (VH).
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spiking neurons that have distinct morphologies often project to tha-
lamus, pons, and colliculus whereas regular-spiking neurons are more
likely to project to cortex or to the striatum (Gao & Zheng, 2004; Le Be,
Silberberg, Wang, & Markram, 2007). Thus, technologies that allow
cell-specific tagging and manipulation with high temporal and spatial
resolution can elucidate the precise functional roles of different firing

In addition to cell-type tagging, engram cell-specific tagging is re-
quired to investigate the intrinsic properties of neurons that are pre-
ferentially recruited to be part of a memory trace. Indeed, one study
used a fluorescence-based Arc reporter to identify amygdala neurons
activated during fear conditioning (Gouty-Colomer et al., 2016). Arc-
expressing neurons exhibited increased excitability compared to non-

types. activated neurons (Gouty-Colomer et al., 2016). Further, neurons that
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Fig. 7. Trace fear conditioning increases spike frequency adaptation in retrosplenial cortical neurons. (A) Representative traces demonstrating spike frequency
adaptation in response to a 200 pA current injection. (B) In response to increasing current injections, retrosplenial neurons from trace fear conditioned rats have
reduced intrinsic excitability compared to naive rats. Scale bar, 10 mV, 500 ms.
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Fig. 8. Trace fear conditioning differentially
modulates the intrinsic excitability of reg-
ular spiking mPFC neurons that project to
the amygdala. (A) Schematic diagram of a
rat coronal section, showing that a glass
pipette was used for the unilateral infusion
of red fluorescent microspheres
(Retrobeads) into the BLA (inset: fluores-
cence image showing infusion). (B) Coronal
section showing the distribution of fluores-
cently labeled cortico-BLA projection neu-
rons (inset: fluorescence image of IL-BLA
projection neurons). (C) Trace fear con-
ditioning significantly enhances the intrinsic
excitability of IL-BLA projection neurons.
Neurons from TRACE rats fired significantly
more action potentials than those from
NAIVE rats (p < 0.05). (D) Trace fear
conditioning significantly decreases the in-
trinsic excitability of PL-BLA projection
neurons. Neurons from TRACE rats fired
significantly fewer action potentials than
those from NAIVE rats (p < 0.05). In both
IL and PL subregions, extinction reversed
the conditioning-specific effect such that
intrinsic excitability in EXT neurons was
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had higher baseline excitability were selected into the fear memory
trace, suggesting that intrinsic excitability determines neuronal selec-
tion. Although this study elucidates an important question regarding
the pivotal role of intrinsic excitability in the fear memory engram,
future work using multicellular recordings is required to reveal local
microcircuit connectivity and precise cell-type specific mechanisms.
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4. Conclusion

In conclusion, alterations in the intrinsic electrical properties of
neurons can fundamentally modulate both the processing of informa-
tion as well as the neuronal output, and these changes and their plas-
ticity can have important implications for variations in fear learning.
Understanding cell-specific and circuit-specific mechanisms associated
with fear learning can shed light on emergence of behavioral pheno-
types during development and aging, as well as in maladaptive fear
responses that result from traumatic experiences or neurodegenerative
disorders. Elucidating these mechanisms may provide more targeted
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(2015).
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neurobiologically-based approaches and facilitate treatment strategies
for anxiety disorders and posttraumatic disorder.
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